also apply for diffusion processes, and one can, in similar fashion, define a Fick's type medium with an in-
finite mass propagation velocity and a Maxwellian medium with a finite mass propagation velocity. The re-
sults obtained here are valid for mass-transfer processes in these materials.

NOTATION

Ag, equilibrium thermal conductivity; pj, mass density, c¢;, equilibrium heat capacity of the material;
A(t), c(t), relaxation kernels for the heat flux and internal energy; a, = A;/pycy, thermal diffusivity, T, tem-
perature; L, L, Laplace transform and inverse Laplace transform operators; p, Laplace transform vari-
able; Aq(t) = A(t)/Ag, ei(t) = c(t)/cyp,, dimensionless relaxation kernels for the heat flux and internal energy;
M, spatial point; Jy, I;, first-order Bessel functions of the first kind for real and imaginary argument; J,, I,
zeroth~order Bessel functions of the first kind for real and imaginary argument; w, heat propagation velocity;
i, imaginary unit; Re, real part of a complex number or function; ¢, index of increase of the function w; 6 (t),
the Dirac delta function; E (t), Heaviside unit step function.
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TEMPERATURE DISTRIBUTION IN PLATES AND INFINITE
PRISMATIC BODIES OF COMPLEX CROSS SECTION FOR A
TIME-VARYING HEAT-TRANSFER COEFFICIENT

A, P, Slesarenko and N. F., Shemetov UDC 536.21

We present a new method for solving heat-conduction problems with a time-varying heat-trans-
fer coefficient in domains of complex shape, and cite numerical results for two problems.

Because of mathematical difficulties, heat-conduction problems with a time-dependent heat-transfer
coefficient cannot be solved analytically in complex domains for a given Bi(Fo), even for one~dimensional
cases [1].

We consider the case when the calculation of the temperature distribution in plates and infinite prisma-
tic bodies of complex cross section reduces to the solution of the heat-conduction problem

Institute of the Problems of Mechanical Engineering, Academy of Sciences of the Ukrainian SSR. Scien-
tific-Industrial Metrology Society, Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 4,
pp. 673-676, April, 1983. Original article submitted December 8, 1981,
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TABLE 1. Values of the Temperature Calculated by Various Meth-

ods
T (0) | T (1)
Fo - i T —_—
1 I 2 | 3 | 1 | 2 [ 3
0,1 0,1574 — - 0,2954 — —
0,2 0,1816 — — 0,3587 — -
0,3 0,2156 — — 0,4104 — —
0,4 0,2538 0,2748 0,2854 0,4592 0,4577 0,4823
0,5 0,2944 0,3256 0,3326 0,5072 0,5228 0,5358
0,6 0,3366 0,3599 0,3666 0,5553 0,5671 0,5781
0,7 0,3800 0,4063 0,4122 0,6031 0,6179 0,6275
0,8 0,4245 0,4439 0,4482 0,6504 0,6610 0,6693
0,9 0,4695 0,4948 0,4987 0,6968 0,7088 0,7158
1,0 0,5150 0,5238 0,5266 0,7420 0,7510 0,7551
1,1 0,5604 0,6061 0,6075 0,7855 0,8082 0,8123
1,2 0,6056 0,6461 0,6461 0,8272 0,8462 0,8487
1,3 0,6502 0,6933 0,6933 0,8666 0,8864 0,8864
1,4 0,6938 0,7422 0,7422 0,9037 0,9224 0,9224
1,5 0,7362 0,7701 90,7701 0,9383 0,9556 0,9556
1,6 0,7771 0,7947 0,7947 0,9702 0,9803 0,9803
1,7 0,8162 0,8201 0,8201 0,9997 0,9998 0,9998

Note. T('O), temperature at the center of an infinite plate; and T(1),
its surface temperature.

T (%, y, Fo)

Fyo = AT (x, y, Fo) 4 F(x, y, Fo),

— Bi,, (Fo) T, (Fo),

m

[ QWTy& + Bin (Fo) T (x, g, F")]
v

S

T, gy, 0)=9x y)

for any given Bi = Bi(Fo) and Ty = Ty (Fo), where S = U S,, is the surface of the infinite prismatic body;

m=1

T = T*/ Ty, and Tge= 1°C.

4y

2)

3)

Employing a very simple implicit difference scheme [2] in time with a step AFo, we obtain a sequence

of steady-state heat-conduction problems for each layer: o
1 1
ATy — Ty = — Th1 — Fy,
AR * AFo "R

= fmk,
Sm

[ aaT k +Bithk}

v

where Tg(x, y) = T(x, y, Fok); Bimk = Bip (Foy ).

We write the structures of the solution of problem (4), (5) for each layer in the form [3, 4]

Tu (%, 9) = Tak -+t = Tar+ NCPXP,

i,f

where

Xﬁ?’=(1+¢km)Pi(x>Pj<y>—w(—a°’— 0P p,q S0 0P Pi);

ax ox oy oy
= 3 B’ [Zon' [
0]

=0, 0p>0; (x, YEQ —
s ov

= —1;

=0; o
s

v is the outward normal to surface S.
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TABLE 2. Approximate and Exact Solutions

T (0; 0) | T (1; 0) T (0; 0) | T (1; 0)
Fo

Fo

f
T exact lTapprox-,lT exact | Tapprox, Texact Fapprox ITexact ,ITapprox
)

0,001 | 3,265 | 3,311 ] 2,505 [ 2,526 0,061 | 4,692 | 4,778 | 2,925 l 2,957
0,011 | 3,429 | 3,478 | 2,559 | 2,581 0,071} 5,074 | 5,171 | 3,022 | 3, 056
0,021 | 3,616 | 3,670 | 2,618 | 2,642 0,081 | 5,517 | 5,629 | 3,130 | 3,167
0,031 | 3,830 | 3,8 | 2,684 | 2,709 0,001 ; 6,034 ; 6,162 | 3,249 | 3,289
0,041 | 4,078 | 4,145 | 2,756 | 2,783 0,096 | 6,324 | 6,462 | 3,313 | 3,355
0,051 ; 4,362 | 4,438 | 2,836 | 2,865

We obtain the following problems for the functions uy:

1 1 1

A, — Uy = T Thor — Fj, = — Fy, (7
" AFo ¥ AFo KT AR M Tl *
auk
-+ Bipu =0.
[ v mk h} 5 (8)

We find the coefficients Cij (k) from the condition for the minimum of the functional

T = | @aduye +

Q

le — ZFkLLkJ dQ —+ 2 j B‘mhukdsm-

m==1 S,

For an infinite plate — <z < ®; =% <« y < ©; ~1= x = 1 we obtain from (§)

XM = @ — a0 220 20 4 i oy @
dx  dx
Oy =x¥=2i=1, ..., n; Oy’ =T, (Fo,); o= -—L(l — %%

The values of the temperature for Bi = 0.5 exp (Fo), Tg =1 + 0. 075Fo0, and ¢ = 0.15 calculated on a
BESM-6 computer by the proposed method (two coordinate functions), by the method of elementary balances
[5], and by using data in [6] are listed in columns one, two, and three respectively in Table 1.

To test the eificiency of the proposed approach to the solution for small values of Fo (initial period) we
consider problem (1)-(3) for a rectangular prism —1=x=1;—-1sy=<l;—~w<z< oforo =1+ (1 + ) A+
fz):

Bi = exp (10Fo); T, = 1-+0.075Fo; F = exp (10Fo) (1 + 10 fo) X
[1 -+ fyexp (10 Fo)} ++ exp (10 Fo) (1 4 10f)[1 -+ f, exp (10Fo)] -+ 0.075.

It is easy to verify that in this case the exact solution of problem (1)-(3) is
T (%, y, Fo) =T, (Fo) + [1 + f,exp (10 Fo)] [1 -+ f, exp (10 Fo)], (9)

where f; = 0.5(1 —x%); f, = 0.5(1 —y?.

In this case in the structures of solution (6)

L = Ta (Fon), XiP = {1+ olf,exp (10F0y) + fyexp (10Fo)] (7, -+ fz)—l}pipj~m( 0o 0P p 00 0P p)
o  ox y oy )

where Pj(x) and Pj(y) are Chebyshev polynomials, and w =1f; +f, - f% + f2,

Table 2 lists the values of Tapprox calculated from Eqgs. (6) (fifteen coordinate functions) and the exact
values Tgoxqet (9) for 0.001 = Fo < 0.1.

When employing the proposed method it is sufficient to construct the function w for plates and infinite
prismatic bodies of complex cross section by using the recommendations in [7].

A comparison of a test example for a square prism with the exact solution (9) is of independent interest
also for numerical methods: Bi(Fo) in the initial period (0 < Fo < 0.1).
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NOTATION

T, temperature of plate or infinite prismatic body; Bi, Biot number; Ty, ambient temperature; F = W/
A; W, specific strength of energy sources; A, thermal conductivity.
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MAIN TYPES OF CONJUGATE PROBLEMS
IN HEAT AND MASS EXCHANGE*

N. I. Nikitenko UDC 536.24.02

The development of optimal technological processes and apparatuses for heat and mass exchange is
placing more and more severe requirements on the suitabilily of mathematical models and the accuracy of
their mechanization. Of great interest in this connection is the solution of problems in heat and mass ex-
change in the conjugate formulation, which makes it possible to take account more fully of the interrelation
between the transfer processes taking place in the bodies which are in contact. In this case the description
of the transfer processes at the interface between the phases makes use of boundary conditions of the fourth
kind, which are differential equations that arise out of the laws of conservation of the relevant entities being
transferred — energy, mass, momentum, ete.

Although boundary conditions of the fourth kind have been used for a fairly long time [1], the solution
of problems in heat and mass exchange in the conjugate formulation was long restricted by the inadequate
level of development of the analytic and numerical methods of solution. The number of published works de-
voted to the solution of conjugate problems (CP) in heat and mass exchange began to increase rapidly after
the appearance of the works of Lykov and Perel'man (2, 3], which were the first to formulate an external CP
in heat exchange and show the desirability of such a formulation. The rapid spread of investigations related
to conjugate heat- and mass-exchange problems was greatly facilitated by the development of numerical meth-
ods of solution designed for use with computers.

The place occupied by CP in the theory of heat and mass exchange is similar in many ways to the posi-
tion occupied by boundary-layer theory, ideal-liquid theory, mechanics of viscous continuous media, or

* The article gives the substance of the report delivered at a meeting of the "Calculation Methods for Pro-
cesses of Heat Transfer and PhysicochemicalTransformations in High~Temperature Materials" section of the
State Science and Technology Commission's Scientific Council on the Problem of "Mass and Heat Transfer in
Technological Processes" in Minsk, October, 1981.

Technical Thermophysics Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 4, pp. 676-678, April, 1983. Original article submitted January
15, 1982.
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